ANALOG DEVICES

16V, 250 A Low Power, Low Noise Dual Precision CMOS Rail-to-Rail Output Operational Amplifiers

Preliminary Technical Data

AD8667

FEATURES

Lower Power at High voltage: 250 µA typ Low Offset Voltage: 100 µV Voltage Noise: 20 nV/√Hz Low Input Bias Currents 1pA Max

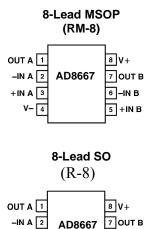
Single-Supply Operation: 5 to 16 Volts Dual-Supply Operation: +/- 2.5 to +/-8 Volts Output drive: 10mA Unity Gain Stable

APPLICATIONS Medical Equipment Physiological Measurement Precision References Buffer / Level Shifting Portable Operated Systems High density Power Budget Systems Multi-pole Filters Sensors Photodiode amplification ADC driver

GENERAL DESCRIPTION

The AD8667 is a dual rail-to-rail output single supply and dual supply amplifiers that use Analog Devices' patented DigiTrim® trimming technique to achieve low offset voltage, 300μ V over the common mode range. The AD8667 family features an extended operating range with supply voltages up to 16 V for low power operation with I_{SY} of < 325 μ A over the extended industrial temperature. These devices are designed for low noise at higher voltages, 20 nV/ \sqrt{Hz} at 10 kHz and 23 nV/ \sqrt{Hz} at 1 kHz. They also feature low input bias currents of 1pA and 10mA output drive.

The combination of low supply currents, low offsets, very low input bias currents, and wide supply range make these amplifiers useful in a wide variety of low power applications.


Systems utilizing DC to low frequency measurements, or high impedance sensors, such as photo-diodes benefit from the combination of low input bias current, low noise, low offset and drive current. The wide operating voltage range matches today's high performance ADCs and DACs. Medical monitoring equipment can take advantage of the low voltage noise, high input impedance, low voltage and current noise,.

The AD8667 is specified over the extended industrial (-40° to +125°C) temperature range.

REV. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks are the property of their respective companies.

PIN CONFIGURATIONS

 $+IN \Delta$

6 –IN B

5 +IN B

08/31/2006

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2006 Analog Devices, Inc. All rights reserved.

ELECTRICAL CHARACTERISTICS

(V_S=+5.0V, V_{CM} = V_S/2, T_A=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{SY} = 8V, V_{CM} = 3V$			100	μV
		$V_{CM} = -0.1V$ to 3.0V		30	300	μV
		-40°< T _A < +85°C			650	μV
		-40°< T _A < +125°C			750	μV
Input Bias Current	IB			0.3	1	pA
	- В	-40°< T _A < +85°C		0.0	50	pA
		-40°< T _A < +125°C			300	pA
Input Offset Current	los			0.2		pА
		-40°< T _A < +85°C			20	pА
		-40°< T _A < +125°C			75	pА
Input Voltage Range	IVR		-0.1		3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1V$ to 3.0V	80	95		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega V_O = 0.5V$ to 4.5V	70	85		V/mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			4		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	VOH	I <u>L</u> = 1mA		4.8		V
		-40°C < T _A < +125°C	4.6			V
Output Voltage Low	VOL	I _L = 1mA		200		mV
		-40°C < T _A < +125°C			250	mV
Short Circuit Current	ISC			± 5		mA
Closed Loop Output Impedance	ZOUT	$f=100kHz, A_V = 1$		100		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5 V$ to 16 V	80	95		dB
Supply Current/Amplifier	ISY	$V_{O} = 0V$		250		μA
		-40°< T _A < +125°C		325		μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		0.2		V/µs
Settling Time	t _S	To 0.1%, 0 V to 1V step				μs
Gain Bandwidth Product Phase Margin	GBP Øo			550 60		kHz degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	f=0.1Hz to 10 Hz		3.5		μV p-p
Voltage Noise Density	e _n	f=10kHz		20		nV/√Hz
Voltage Noise Density	en	f=1kHz		23		nV/√Hz
Current Noise Density	in	f=1kHz				pA/√Hz

ELECTRICAL CHARACTERISTICS

(V_S=16V, V_{CM} = V_S/2, T_A=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{SY} = 8V, V_{CM} = 3V$			100	μV
		$V_{CM} = -0.1V$ to +14.0V		30	300	μV
		-40°< T _A < +85°C			650	μV
		-40°< T _A < +125°C			750	μV
Input Bias Current	IB			0.3	1	pА
		-40°< T _A < +85°C			50	pА
		-40°< T _A < +125°C			300	pА
Input Offset Current	IOS			0.2		pА
		-40°< T _A < +85°C			20	pA
		-40°< T _A < +125°C			75	pA
Input Voltage Range	IVR		-0.1		14	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1V$ to +14.0V	80	95		dB
Large Signal Voltage Gain	Avo	R _L =2 kΩ V _O = 0.5V to+15.5V	70	85		V/mV
Offset Voltage Drift	ΔV _{OS} /ΔT			3		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Voн	IL = 1mA	15.8	15.9		V
		I _L = 10mA	15	15.2		V
		-40°C < T _A < +125°C	14.7			V
Output Voltage Low	VOL	lı = 1mA		51	80	mV
		$I_{I} = 10 \text{mA}$		550		mV
		-40°C < T _A < +125°C		900		mV
Short Circuit Current	ISC			±10		mA
Closed Loop Output Impedance	ZOUT	f=100 kHz, A _V = 1		100		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{S} = 5V$ to 16V	80	95		dB
Supply Current/Amplifier	ISY	$V_{O} = 0V$		250		μA
		-40°< T _A < +125°C		325		μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	R _L =2 kΩ		0.3		V/µs
Settling Time	t _s	To 0.1%, 0 V to 1V step				μs
Gain Bandwidth Product	GBP			550		kHz
Phase Margin	Øo			60		degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	f=0.1Hz to 10 Hz		3.5		μV p-p
Voltage Noise Density	e _n	f=1kHz		23		nV/√Hz
Voltage Noise Density	en	f=10kHz		20		nV/√Hz
Current Noise Density	in	f=1kHz				pA/√Hz

Notes